By Gerard A. Maugin
January 18, 2011
Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the ...
By D. Iesan
November 19, 2008
Reflecting new developments in the study of Saint-Venant’s problem, Classical and Generalized Models of Elastic Rods focuses on the deformation of elastic cylinders for three models of continuum: classical elastic continuum, Cosserat elastic body, and porous elastic material. The author presents ...
By Martin Ostoja-Starzewski
August 13, 2007
An area at the intersection of solid mechanics, materials science, and stochastic mathematics, mechanics of materials often necessitates a stochastic approach to grasp the effects of spatial randomness. Using this approach, Microstructural Randomness and Scaling in Mechanics of Materials explores ...
By Theodore H.H. Pian, Chang-Chun Wu
November 04, 2005
While the theory and application of finite elements methods can be extended to incompatible, hybrid, and mixed element methods, important issues, such as determining the reliability of the solution of incompatible multivariable elements, along with a common perception of impracticality, have ...
By Han-Chin Wu
December 20, 2004
Tremendous advances in computer technologies and methods have precipitated a great demand for refinements in the constitutive models of plasticity. Such refinements include the development of a model that would account for material anisotropy and produces results that compare well with experimental...
By Shijun Liao
October 27, 2003
Solving nonlinear problems is inherently difficult, and the stronger the nonlinearity, the more intractable solutions become. Analytic approximations often break down as nonlinearity becomes strong, and even perturbation approximations are valid only for problems with weak nonlinearity.This book ...